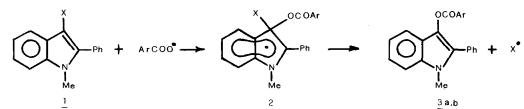
IPSO-SUBSTITUTIONS. REACTIONS OF 3-SUBSTITUTED INDOLES WITH BENZOYLPEROXIDE


Martino Colonna, Lucedio Greci and Marino Poloni

Istituto Chimico, Facoltà di Ingegneria, Università di Bologna Viale Risorgimento 2 - 40136 Bologna, Italy.

Summary: 3-substituted indoles with benzoylperoxide led to the 3-benzoyloxy derivative.The reaction on is discussed in terms of homolytic ipso-substitution.

Recently we observed that nitronium and nitrosonium ions¹ reacted with 3-substituted indoles to form 3-nitroindole. In this letter we report the results for the reaction between 3-substituted indoles and benzoylperoxide. In this case also the benzoyloxy group displaces the substituent at C-3 to form the 3-benzoyloxy derivative <u>3a</u> (Scheme 1). All reactions were carried out at room temperature in benzene or pyridine and in every case compounds <u>3a</u> and unchanged starting materials were the only compounds isolated.

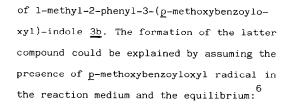
Scheme 1

X=H; CH₂OH; CH₂-(3'-indolyl); CH(Ph)-(3'-indolyl); N₂Ph; COCH₃; CHO. a:Ar=Ph; b:Ar=p-MeO-C₆H₄-

Indipendently from the mechanism involved in the reaction pathway, on the basis of the reaction on time and the yield of compound <u>3a</u>, we can hypothesize that the <u>ipso</u>-substitution for the studied groups follows the sequence:

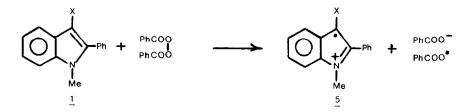
 $H \ge CH_2OH > CH_2-(3'-indoly1) \ge CH(Ph)-(3'-indoly1) > N_2Ph \ge COCH_3 \ge CHO$, which is the same as that we proposed for the reactions with nitronium ion.¹ The reaction between unsubstituted indoles and benzoylperoxide has already been studied by others,² but the mechanism was discussed either in terms of homolytic or heterolytic factors.

It is well known that the acylperoxides undergo a homolytic decomposition in the presence of amines.^{3,4,5} Therefore we thought the reactions described herein and carried out in pyridine, which are faster than those carried out in benzene (see Table), might take place through a homoly tic <u>ipso</u>-substitution. In fact, if the reaction between 1-methyl-2-phenylindole or 1-methyl-2--phenyl-3-hydroxymethylindole and benzoylperoxide was performed in pyridine in the presence of a large excess of p-methoxybenzoic acid, compound <u>3a</u> was isolated together with a small amount


Table: Reaction	is crines	anu % yietus	01 54
1	Solvent	Time(hrs)	<u>3a</u> (% yield)
X = H	а	120	50
	b	24	50
$X = CH_2OH$	а	120	32
2	b	24	49
$X = -CH_2 -$	а	120	24
-(3'-indolyl)	b	48	40
X = -CH(Ph) -	а	120	25
-(3'-indolyl)	b	24	25
$X = N_2 Ph$	а	120	16
L	b	70	24
$X = COCH_3$	а	120	0
5	b	120	10
X = CHO	а	120	0
	b	120	7

Table, Reactions times and % vields of 3a

a, benzene; b, pyridine.


the operant mechanism would be that shown in Scheme 2.

Scheme 2

	PhCOO'+p-MeO-C_HCOOH
<u> </u>	<u>p</u> -MeO-C ₆₄ -COO'+ PhCOOH

As to the reactions performed in benzene, the mechanism could also involve homolytic decomposition of the benzoylperoxide, but, in this case, the 0-0 bond cleavage would be induced by the indole nucleus.Thus

This supposition was confirmed by the experimental results. In fact, indoles bearing substituents at C-3 like COCH_3 or CHO, which increase the oxidation potential of the indole nucleus, do not undergo the electron transfer process shown in Scheme 2 and do not react at all.

Compound <u>3a</u>: m.p. 101°(benzene/petroleum ether); I.R.,1725 cm⁻¹ (C=0); ¹H N.M.R., in CDCl₃(int. TMS):3.72(3H,s,CH₃);7.0--7.7(12H, m, arom.); 8.12-8.38(2H, m, arom.). Anal. Found: C,80.90; H,5.29; N,4.03. Calcd. for C_H NO₂:C,80.71; H,5.23; N,4.28.

Compound $\underline{3b}$:I.R. 1730 cm⁻¹(C=O); ¹H N.M.R., in CDCl₃(int.TMS): 3.72(3H, s, NCH₃); 3.89(3H, s, OCH₃); 7.0-7.8(11 H, m, arom.); 8.12-8.40(2H, m, arom.). M*, Found: 357; calcd. for C_{23 19} 3:357,41.

References

1. M. Colonna, L. Greci and M. Poloni, J. Chem. Soc., Perkin II, accepted for publication.

- 2. Y. Kanaoka, M. Aiura and S. Hariya, J. Org. Chem., 36, 458 (1971).
- 3. T. Sato and T. Otsu, Chemistry and Industry, 125 (1970).
- 4. C. Filliatre, R. Lalande and J.-P. Pometan, Bull. Soc. Chim. France, 1147 (1974).
- 5. K.H. Pausacker, Australian J. Chem., 11, 200 (1958).
- 6. C. Berti, M. Colonna, L. Greci and L. Marchetti, Tetrahedron, <u>33</u>, 3149 (1977).

(Received in UK 2 January 1981)